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Abstract
Value chain data is crucial for navigating economic disruptions. Yet, despite its
importance, we lack publicly available product-level value chain datasets, since
resources such as the “World Input-Output Database”, “Inter-Country Input-Output
Tables”, “EXIOBASE”, and “EORA”, lack information about products (e.g. Radio Receivers,
Telephones, Electrical Capacitors, LCDs, etc.) and instead rely on aggregate industrial
sectors (e.g. Electrical Equipment, Telecommunications). Here, we introduce a
method that leverages ideas from machine learning and trade theory to infer
product-level value chain relationships from fine-grained international trade data. We
apply our method to data summarizing the exports and imports of 1200+ products
and 250+ world regions (e.g. states in the U.S., prefectures in Japan, etc.) to infer value
chain information implicit in their trade patterns. In short, we leverage the idea that
due to global value chains, regions specialized in the export of a product will tend to
specialize in the import of its inputs. We use this idea to develop a novel proportional
allocation model to estimate product-level trade flows between regions and
countries. This contributes a method to approximate value chain data at the product
level that should be of interest to people working in logistics, trade, and sustainable
development.
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1 Introduction
Value chain data is important to understand the resilience and systemic effects of disrup-
tions, such as natural disasters (Park et al. [35], Abe and Ye [1]), climate change (Ghadge
et al. [13]), war (Ruta [30], Ali et al. [2], Laber et al. [24]), and disease (OECD [34]). Publicly
available value chain data, however, such as the Organisation for Economic Co-operation
and Development (OECD) Inter-Country Input-Output Database (OECD [33]), the World
Input-Output Database (Timmer et al. [41]), EXIOBASE (Stadler et al. [40]), and EORA
(Lenzen et al. [26, 27]) have limited sectoral resolution, being often disaggregated into a
few dozen industries. This limited granularity is inadequate for applications where de-
tailed product or sectoral resolution is needed, such as identifying critical industries, de-
veloping strategies and tracing the environmental impact of products in a period of polit-
ical, health and weather uncertainties (Johnson [21], Diem et al. [10]).

Unlike value chain data, international trade data is much more granular, with over 5000
categories at the “six-digit level” (Harmonized System 6 (HS6) (Chaplin [8])) and over 1000
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categories at the “four-digit level” (Harmonized System 4 (HS4)). Yet, while international
trade data is also a go-to dataset for analysts working to understand disruptions, trade data
lacks explicit information about value chain relationships. Trade data tells us that China
imports iron ore from Brazil, but it does not tell us what that iron ore is used for (e.g.
cars, iron rods, aircraft, etc.). But can we use granular international trade data to estimate
product-level value chain relationships? Trade theory tells us that trade data must contain
implicit information about value chain relationships. This information should be hidden
in a country or region’s specialization patterns and we should be able to extract it by using
trade theory-inspired features combined with machine learning techniques.

The idea of mapping value chains from trade data, however, is not new. Several projects
have tried to combine input-output tables (Leontief [28]) and trade data in efforts to map
global value chains (Lenzen et al. [26, 27], Timmer et al. [41], OECD [33]). These efforts
use national input-output tables, connecting sectors at the local level with trade data, to
estimate the volume of imported inputs used in each sector of an economy. These efforts,
tend to rely on proportional allocation methods, where imports are distributed among
sectors in the same proportion as local inputs. That is, they assume, for instance, that if
20% of the steel produced in a country is used for the production of machinery, then 20%
of the steel imported from any country will also be used for the production of machinery.
The result datasets (Lenzen et al. [26, 27], Timmer et al. [41], OECD [33]), however, still
have a limited granularity and could benefit from increased sectoral and spatial resolution.

The use of machine learning for mapping supply chains has also been explored in several
efforts. This includes supervised machine learning models capable of predicting firm-level
supply chains (Mungo et al. [32]). Yet despite achieving high accuracy, these models often
grapple with limitations such as reliance on sector-specific data (e.g., automotive (Kosasih
and Brintrup [22]), energy (Kosasih et al. [23]), aerospace (Brintrup et al. [7])), country-
specific data (e.g., the United Kingdom (U.K.), Japan (Mori et al. [31]), or South Korea (Lee
and Kim [25])), and a notable absence of product-level information.

In this study, we introduce a value chain mapping method designed to estimate input-
output relationships at the product level. Our approach involves fine-tuning the model
on trade data between countries and subsequently producing the results on trade data
between regions. Notably, this method after being successfully fine-tuned, can also be
extended to estimate input-output product relationships between individual firms.

Detailed value chain data is crucial for a number of applications, exemplified by the
following four instances.

First, consider the disruptions caused by the Ever Given, the massive container ship that
in 2021 became stranded in the Suez Canal (BBC [5]). By blocking the Suez Canal, the Ever
Given impeded the global flow of products, including oil, robusta coffee beans, furniture,
and retail, between Asia and Europe (Martin [29], Domonoske [11]). The resultant scarcity
of coffee beans, for example, had a cascading effect throughout the value chain, hampering
the production of instant coffee. The Ever Given incident underscores the critical role
of detailed value chain data in understanding and mitigating the impact of supply chain
disruptions on various industries.

Second, value chain data can inform us about questions with geopolitical implications.
Countries often avoid sourcing key components from geopolitical rivals. For instance, by
organizing their value chains to avoid depending on potential enemies for strategic re-
sources, such as fuel or electronics.
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Third, value chain data can be a key input for environmental assessments (Stadler et al.
[40]), since it is needed to account for the environmental impact of imported goods.

And finally, value chain data can be important to those working on corporate ethical
responsibility. For instance, a clothing company may want to have traceability of its inputs
to ensure its products are not produced using forced or child labour.

Yet, despite the glaring need for value chain data, there are no granular publicly available
value chain datasets with fine spatial and sectoral resolution. In this paper, we explore the
creation of a method to infer value chain relationships from international trade data in an
effort to create product-level maps of global value chains.

In brief, our method exploits the idea that geographies that specialize in the export of
a product will tend to specialize in the procurement of its inputs (Hummels et al. [20],
Timmer et al. [42], Constantinescu et al. [9]). This tendency should be observed twice in
trade data: upstream and downstream. The upstream tendency should be expressed in
the products imported by a location that specializes in the export of a product. That is,
we expect exporters of computers to specialize in the import of Liquid Crystal Displays
(LCDs). Similarly, the downstream tendency should be expressed in the products exported
by a location specialized in the import of a product. That is, importers of LCDs will tend to
specialize in the export of computers. Here we combine both upstream and downstream
specialization patterns in a model that we optimize to identify input-output relationships.
We apply this model to a dataset summarizing the exports and imports of 1200+ products
and 300+ world regions (e.g. states in the United States (U.S.), prefectures in Japan, etc.)
to create a product-level dataset of value chain relationships.

Our method, however, is not without limitations. While it is designed to operate at the
product level, it is not perfectly accurate, meaning that it provides some false-positive
relationships. Also, it does not provide a full input-output network, but a set of the most
likely value chain links for each product. Moreover, our method requires optimizing four
different parameters, a process that can be slow and complicated.

Despite this limitation, we find that using trade theory inspired features results in a
model that correctly identifies 70% of the first input for machinery products, validating
the possibility of using international trade data at the regional level to identify value chain
relationships.

In the remaining sections of this paper, we provide a detailed description of our data and
methods. The structure of the paper is as follows: we begin with a section that discusses the
data utilized in our model (section Data). First, we introduce some of the essential trade
theory concepts that underpin our approach (section Trade Theory). Then we use these
concepts to develop a proportional allocation model to assign trade flows along a value
chain (section Proportional Allocation Model). Next, we introduce our “Backward & For-
ward” method to predict input-output relationships between products (section Method-
ology) and use it to construct a product-level dataset (HS4 and HS6 level) fine-tuned on
the OECD Inter-Country Input-Output table (OECD [33]). We then manually validate a
random sample of the results obtained by the “Backward & Forward” method to estimate
its accuracy. Lastly, we explore three applications: estimating trade flow between regions
and input-output products, extending the results beyond three inputs and assessing the
average complexity index of products (Hausmann et al. [15]) based on their position in the
value chain (section Implications). Our findings contribute to the development of compu-
tational methods aimed at constructing global value chain datasets.
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2 Data
We leverage fine-grained international data compiled by the Observatory of Economic
Complexity (Simoes and Hidalgo [38]) (oec.world) spanning from the year 2017 to 2020.
This is data on exports and imports at the regional level for 5890 HS6 products. Because
of incompatibilities in data reporting (not all countries report regional trade data using
the same classification), our sample is limited to regional data from 8 countries: Brazil (32
regions), Canada (13 regions), Chile (16 regions), China (31 regions), Japan (42 regions),
Russia (85 regions), Spain (53 regions) and the United States of America (54 regions).

We clean this dataset by removing unknown regions and reexports such as “Reexpor-
tação”, “Exterior”, “Mercadoria Nacionalizada”, “Não Declarada” and “Consumo de Bordo”
from the data of Brazil, “Unknown” from the data of the U.S. and Japan and “Sin provincia
asignada” from the data of Spain. This leaves us with 318 regions.

We then remove small regions that tend to have noisy signals about exports and imports
(a few dollars of exports and imports can drastically change the observed specialization
pattern of regions with low trade volumes) (Hidalgo [16]). After inspecting the distribution
of exports and imports (Fig. 1), aggregated from 2017 to 2020, we remove regions on the
left tails of the export’s and of the import’s distributions. These are regions which in these

Figure 1 (A) Total import (a) and export (b) distributions across 9 regions from 2017-2020 from the
Observatory of Economic Complexity data. Regions include Brazil, Canada, Chile, China, Japan, Mexico, Russia,
Spain, and U.S.. (B) The proportional allocation model utilizes the input-output relationship produced by the L
term and further quantifies the trade flow between two regions. In this figure, the term L provides the
information that Cars need Rubber Tires, Engine Parts and Seats for their production. Whereas, the
proportional allocation model uses the input-output information to quantify the exports of Rubber Tires,
Engine Parts and Seats from Hiroshima to Barcelona which would be used for Barcelona’s local production of
Cars
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four years imported or exported in total less than 1 billion United States dollar (USD) (e.g.
Ivanovo Region, De Magallanes Y Antartica Chilena, Paraíba, etc.). After removing these
49 regions we are left with a final sample of 269 regions.

We note that our data contains export and import information between regions and
countries. That is, we know what Barcelona imports from Brazil, or what Sao Paulo im-
ports from Spain, but not what is traded between Barcelona and Sao Paulo.

Finally, we map the HS6 product codes with their respective HS4 codes and names, and
are left with 1230 HS4 and 5890 HS6 unique product categories.

In addition, we use the 2021 edition of OECD Inter-Country Input-Output (ICIO) data
to fine-tune our model. This is a table containing 45 unique industries based on ISIC Re-
vision 4 (industry, not product categories) for 66 countries. From this data, we produce
two tables: OECD specialization and the OECD labeled data. A description of this data
can be found at OECD [33]. For further details on the data manipulation see Additional
file 1.

3 Trade theory
Trade theory is a branch of economics focused on regional and international trade. A key
contribution goes back at least 200 years to the work of the British economist David Ri-
cardo [36]. In this paper, we use Ricardo’s concept of comparative advantage to create
some of the features used in our model.

A location is said to have comparative advantage in the products that it is specialized
in. Trade theory, in particular, the Heckscher-Ohlin model (Flux [12]), tells us that com-
parative advantages inform us about the factors that an economy is well endowed with.
For instance, we expect economies endowed with vast maritime resources to specialize in
the exports of fish and landlocked mountainous economies to specialize in the exports of
minerals.

In today’s globalized economy, however, where intermediate inputs are highly mobile,
economies often specialize in processes that are not necessarily pinned down by the pres-
ence of natural resources but by the availability of knowledge (Hausmann et al. [14]). That
is, countries that export cars or furniture do not do so because they are endowed with iron
or lumber (they can source these from global markets) but because they are equipped with
skilled labour, technological expertise, and efficient manufacturing infrastructure. This
means that countries and regions will tend to import some of the inputs they need to pro-
duce the outputs they export. Thus, we should be able to observe value chains implicitly,
albeit imperfectly, in international trade flows.

To estimate comparative advantages in practice scholars use indicators of Revealed
Comparative Advantage (RCA) (Balassa [4]) (also known as the Location Quotient in ur-
ban economics).

Formally, the Revealed Comparative Advantage of a location in an activity is the ratio be-
tween observed and expected exports that can be obtained by simply double-normalizing
the export matrix. That is, the RCA of a location l in a product p is:

RCAlp =
Xlp

∑︁
p′ Xlp′

/
∑︁

l′ Xl′p
∑︁

l′p′ Xl′p′
, (1)

where Xlp are the exports of location l in product p.
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When a location has an RCA larger than 1 in a product, we say that the location is spe-
cialized in that product since it exports more than what it is expected for a location of the
same size and for a product with the same global market.

Going forward, we define two versions of RCA. An export RCAexport , as defined in equa-
tion (1), and an import RCAimport defined in the same manner, but where Xlp represents
the imports of location l in product p. The RCAimport should tell us about the product
that a region imports too much of. Our hypothesis is that by exploiting specialization pat-
terns across multiple geographies we can generate features that when fed into a machine
learning model can recover information about global value chains.

4 Proportional allocation model
Formally, our goal is to estimate the tensor Xr1p1r2p2 . This tensor represents the flow of
product p1 coming from region r1 and used in region r2 to produce product p2. The data
we have available, however, is more incomplete and represents two aggregates of the afore-
mentioned tensor. These are: Xr1p1c2 and Xc1p1r2 , which denote, respectively, the exports
of product p1 by region r1 to country c2 (where region r2 is located) and the imports of
product p1 by region r2 coming from country c1 (where region r1 is located).

We can estimate the flow value in product p1 from region r1 for the production of p2 in
region r2 (Xr1p1r2p2 ) using the following proportional allocation model:

Xr1p1r2p2 =
Xr1p1c2∑︁

r1∈c1
Xr1p1c2

Lp1p2⏞⏟⏟⏞
unknown

Xr2p2∑︁
p2

Xr2p2 Lp1p2
Xc1p1r2 . (2)

Here the first fraction represents the share of exports of product p1 by country c1 coming
from region r1 and going to country c2. For example, the share of Tokyo in Japan’s exports
of semiconductors to Spain.

The second term, Lp1p2 is a binary matrix where 1 represents an input-output relation-
ship between products p1 and p2 (Fig. 1). It will be the main challenge of our estimation
method.

The third term is the share of exports of product p2 by region r2 over all of region’s r2

exports that use p1 as an input. For example, Madrid’s share of car exports over all products
that use semiconductors as an input.

Finally, the term (Xc1p1r2 ) represents the exports of product p1 flowing from country c1

to region r2.
In principle, we can use trade data to estimate all of the terms of this equation except

for the matrix L. Put together, equation (2) provides a proportional allocation model to
estimate product specific value chain trade flows between a pair of regions.

Our next goal, is therefore, to develop a method to estimate Lp1p2 .

5 Methodology
5.1 Backward & forward method
A link in a value chain can be traversed in two directions: a downstream or forward di-
rection (from sunflower seeds to sunflower oil) and an upstream or backward direction
(from sunflower oil to sunflower seeds) (Singer and Donoso [39]).

To estimate the term Lp1p2 from equation (2) we introduce the “Backward & Forward”
method. The “Backward & Forward” method combines downstream and upstream value
chain flows.
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In the “Forward” approach, we start by selecting an import product p1 and then we
select the regions that import a disproportionately large amount of product p1 (using an
RCAimport measure). This provides us with a list of locations sorted by import RCA (e.g.
Alabama, Aguascalientes, etc.), which are places that import “too much” of that product
(e.g. engines, batteries, etc.). We then look at the export specialization of these regions.
The result is a matrix of the exports of the locations that import “too much” of product
p1. We then try to learn the outputs (e.g. cars, motor vehicles, etc.) associated with the
import from the over-expressed exports of these locations.

In the “Backward” approach we first select an export product p2 and then identify the
locations that export a disproportionately large amount of product p2. We then analyse
what these locations specialize in, in terms of imports. The result is a matrix of the imports
of the locations that export “too much” of the selected product. We then use this method
to learn the inputs of product p2.

We note that every product has an input but not every product has an output. For exam-
ple, “Rolled Tobacco” (a.k.a. cigarette) is a final product that goes directly into consump-
tion. While raw materials such as “Iron Ore” still need excavation machines to be extracted
and transported. For that reason, we identify inputs of every product by first applying the
“Backward” and then validating with the “Forward” approach. We call this the “Backward
& Forward” method.

In pseudo-code (Algorithm 1), we identify the inputs of all of our products P by fixing a
product pi (pi ∈ P where 1 ≤ i ≤ No._of _products) and apply the “Backward” approach
first (“get_n_input_candidates()”). This gives us the top n input candidates D (dj ∈ D
where 1 ≤ j ≤ n) for the input pi (we remove self-inputs (“drop()”)). Then, for each dj,
we apply the “Forward” approach (“get_n_output_candidates()”) to identify the outputs
of dj, called T . We then look for product pi in the outputs (T ) of D. If we find pi in T , we
take the rank (“getRank()”) of pi in T and add it to the rank of dj in the inputs of pi. And
if we do not find pi in T , then we take the worst ranking which is the one of the last pn

Algorithm 1 Backward & Forward Algorithm
for every pi ∈ P do

D ← get_n_input_candidates(pi) ▹ Backward

if pi in D then
D.drop(pi)

end if
for every dj ∈ D do

T ← get_n_output_candidates(dj) ▹ Forward

if pi ∈ T then
value ← T .getRank(pi)

else
value ← T .getRank(tn) + 1

end if
old_rank ← D.getRank(dj)
new_rank ← old_rank + value
D.updateRank(dj, new_rank) ▹ Update ranking

end for

result ← D.order_by_rank_ascending()
end for
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candidate product and add plus one, and add it to the rank of dj in the inputs of pi. This
technique updates (“updateRank()”) the initial ordering of dj as an input of pi. We then
order the products in ascending order (“order_by_rank_ascending()”). This makes “2” the
minimum and best possible rank meaning that dj was the first candidate (rank 1) as an
input to pi and pi was the first candidate (rank 1) as an output to dj. Further details on the
fine-tuning of the parameters in the method can be found in the Additional file 1.

By merging both the “Backward” and then the “Forward” approach, the combined
method first identifies product candidates and then cross-verifies them through the Back-
ward and Forward steps, thereby reducing noise and refining the input-output product
results.

6 Results
To produce our results, we apply the “Backward & Forward” method to HS4 and HS6
products, identifying the top three input candidates for each product. We limit the pre-
diction to three inputs for two purposes: it ensures we go beyond a single input which
captures cases where the correct input might rank second or third, and most importantly
it keeps the manual validation process manageable by reducing the number of links re-
quiring labeling.

Our initial application of the “Backward & Forward” method focused on around 1200
HS4 products. In Fig. 2 (A) we see part of the value chain networks produced by the “Back-
ward & Forward” method using HS4 trade data. These examples were validated manually
for visualisation purposes. Red edges represent false positive, while the green edges are
true positive value chain relationships.

Examples of accurately identified products are the inputs for “Cars”: “Motor vehicle
parts and accessories (8701 to 8705)”, “Electrical Lighting and Signaling Equipment”, and
“Seats”, while for “Delivery Trucks” the inputs are “Motor vehicle parts and accessories
(8701 to 8705)”, “Electrical Lighting and Signaling Equipment”, and “Padlocks”. Other ex-
amples are “Telephones” and “Computers” where the inputs for the former are “LCDs”,
“Printed Circuit Boards” and “Integrated Circuits”, and for the latter are “Photographic
Chemicals”, “Machines and apparatus of a kind used solely or principally for the manufac-
ture of semiconductor boules or wafers, semiconductor devices, electronic integrated cir-
cuits or flat panel displays” and “Other Measuring Instruments”. The other correct results
we can see in the figure are for “Processed Tobacco”, “Integrated Circuits”, and “Military
Weapons”.

However, we also see some false positive results in Table 1. In the example of “Electrical
Ignitions” the model incorrectly predicts as inputs “Alkaline Metals” and “Non-Knit Men’s
Undergarments” while it correctly predicts “Electromagnets”. Other examples where our
model is able to identify only one correct input are “Jewellery” and “Pig Iron”.

Next, we applied our method to a more granular product classification, namely the HS6,
which consists of over 5000+ unique products. In Fig. 2 (B) we see examples of the value
chain networks produced by the “Backward & Forward” method using HS6 products. No-
tably, our method accurately identifies the inputs of “Medium Sized Cars”, “Cigarettes con-
taining tobacco”, “Telephones for cellular networks or for other wireless networks” and
“Electronic integrated circuits: processors and controllers, whether or not combined with
memories, converters, logic circuits, amplifiers, clock and timing circuits, or other cir-
cuits” even at this more granular level of product classification.
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Figure 2 Subsets of our value chain network results, focusing on HS4 (A) and HS6 (B) products. Directed
edges denote input-output connections, with red indicating misclassifications and green denoting correct
identifications. (C) Bar charts comparing the performance of the Baseline with the Backward & Forward
method, showing the percentage of one, two and three inputs correctly identified for 50 randomly sampled
output products from each dataset (HS4, HS6, and Machinery products), with relations manually labeled to
assess correctness. (D) Bar charts providing deeper insights into the Backward & Forward method’s
performance, analyzing correct input identifications across HS Product Sections (a) and PCI groups (b) : Low
(PCI < –0.5), Medium-Low(–0.5≤ PCI < 0.5), Medium-High (0.5≤ PCI < 1.2) and High (PCI ≥ 1.2)
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Table 1 HS4 examples produced by the Backward & Forward method where the green cell
represents a correctly predicted input candidate and red incorrectly. For readability, some of the
product names have been shortened

The model predicted false positive results for “Helicopters of an unladen weight
<2000 kg” with the inputs “Rowing boats, canoes, pleasure boats except sail/powe” and
“Almonds, fresh or dried, shelled”. The product “Pig iron, non-alloy, <0.5% phosphorus”
has no correct inputs.

6.1 Validation
Due to the absence of a gold-standard true-positive input-output product dataset, we
evaluate our “Backward & Forward” estimation of the Lp1p2 term by manually labeling
four random samples, each consisting of 50 products. These are two random samples for
HS4 products (one considering all products and another random sample considering only
products in the machinery & transportation HS sections), as well as two random samples
for HS6 products (also, one considering all products and another random sample consid-
ering only products in the machinery & transportation HS sections). For each of these
random samples we choose three inputs, randomly to establish a null-model baseline, and
then again with our method.

We label relationships as true only when they represent direct input-output relationships
(e.g., vehicle parts as an input to car). Conversely, relationships are labeled as incorrect if
the product is an indirect input (e.g., iron ore as an input to car) or not an input at all. We
also acknowledge that as the classification level becomes more detailed (e.g., moving from
HS4 to HS6), the process of manual labeling demands greater technical expertise. Despite
our best efforts to ensure precision, this may introduce slight labeling inaccuracies.

Figure 2(C) shows the percentage of outputs having at least one, two and all three inputs
correctly identified. On the y-axis we have the different methods: “Baseline Model” and
“Backward & Forward Model” using the HS6 and HS4 product classifications. The “Back-
ward & Forward” method successfully identifies at least one accurate input for over 40% of
HS6 products (in total 5000+) and more than 56% of HS4 products (in total 1200+), mark-
ing a performance more than twice that of a random baseline model. Furthermore, “Back-
ward & Forward” method can identify at least one of the inputs for 70% of the 50 HS4 prod-
ucts coming from the group of “Machinery” (machinery and transportation HS Section),
whereas the baseline can identify only 30%. The random baseline also performs poorly
when evaluated on the task of identifying more than one input correctly, when our model
is able to identify two and sometimes three inputs correctly. While this validation shows
that the accuracy of our model is far from perfect, it significantly–and substantially–beats
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the random benchmark, showing that the model is capturing information that is relevant
to identify input-output relationships at the product level.

We further explore the accuracy of our method across different HS sections and levels of
economic complexity groups. We find that the Backward & Forward method (Fig. 2 D (a))
successfully identifies all three inputs correctly in some products from the Machines, Tex-
tiles, and Transportation sectors, which also constitute the largest samples in our dataset.
Additionally, the model performs well in the Arts and Antiques and Animal Hides sectors;
however, due to the very small sample sizes in these cases, no definitive conclusions can
be drawn. When considering sectors where the method most successfully identifies two
inputs, the results, in descending order of performance, are: Textiles, Mineral Products,
Machines, Animal Products, Transportation, Metals, Vegetable Products, and Chemical
Products. In Fig. 2 D b) (based on 196 samples, as the 2017 PCI data for 4 products was
unavailable), the Backward & Forward method demonstrated strong performance in iden-
tifying at least one or two inputs for products with high Product Complexity Index (PCI).
However, the highest average precision for correctly predicting all three inputs was ob-
served in products belonging to the Medium-Low and Medium-High PCI groups.

We believe we receive higher precision in the sample “Machinery” and on high-
complexity products partly due to the data, which predominantly originates from coun-
tries with well-developed industrial sectors. By expanding the dataset with additional re-
gional trade data from other countries, we expect this precision to increase further.

The performance of the “Backward & Forward” method is particularly significant, as no
existing dataset offers input-output relationships at such a granular level of product clas-
sification (HS6 and HS4). We aspire for our model to serve as a foundational benchmark
that future research can build upon. To support this, we are making our code and HS4
input-output results publicly available to ensure the reproducibility of our findings and to
encourage the development of improved methodologies.

7 Implications
Detailed product-level input-output data has several applications. Here, we focus on three.
First, we use our proportional allocation model (Sect. 4, equation (2)) to estimate product-
level trade flows between regions. Second, we explore the potential of our method going
beyond the prediction of only three inputs. Third, we examine variations in the complexity
of products along the value chain estimated according to the Product Complexity Index
(PCI) (Hidalgo and Hausmann [18], Hausmann et al. [15], Hidalgo [16]).

For the first application, we must estimate Xr1p1r2p2 using equation (2). This represents
the flow of product p1 coming from region r1 used by region r2 to produce product p2.

Consider the use of engine parts from Jiangsu (China) for the production of cars in
Barcelona (Spain). To estimate this flow we need to first estimate the share of Jiangsu
in Spain’s import of Chinese engine parts (Xr1p1c2 /

∑︁
r1

Xr1p1c2), which is 16.7%. We also
need to estimate the share of cars in Barcelona’s exports of products using engine parts
as an input Xr2p2 /

∑︁
p2

Xr2p2 Lp1p2 . Since our method to estimate Lp1p2 does not provide us
with a full list of value chain relationships, we must bound this term. The bounds range
from considering that all imports of engine parts are used for car production (Lp1p2 = 1
only if p2 = cars) and considering that imports are allocated proportionally among all
of Barcelona’s exports (Lp1p2 = 1 ∀ p2). In this example, the range of the share is 100%

to 11.8%. Finally, we scale these fractions by Barcelona’s total imports of Chinese engine
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parts, which is 54.6M USD. Since in this case, Lp1p2 = 1, we can multiply these terms to es-
timate Barcelona’s imports of Jiangsu’s engine parts that are used to produce car exports.
This results in an estimate in the range: 1.076M USD to 913M USD of engine part exports
from Jiangsu for the production of car exports between 2017 and 2020 (Fig. 1).

Consider the trade flow of LCDS from Osaka, Japan used by Guangdong, China to ex-
port Telephones. Osaka’s share of Japanese LCDS imported by Guangdong is 33.8%, while
Guangdong’s share of Telephone exports is 12.1%. With a 3.553B USD flow of LCDS from
Japan to Guangdong, we estimate Guangdong imported between 145M and 120B USD of
LCDS for the export of telephones between 2017 and 2020 (see Fig. 3(A)).

Using the same approach, we find that the trade flow of disc chemicals for electronics
from Zhejiang, China to Texas, United States for the export of Integrated Circuits ranged
from 215K USD to 556M USD, while Hiroshima, Japan imported between 10.6K USD
and 2.59M USD worth of motor vehicles; parts and accessories from Ontario, Canada for
the export of cars in the period between 2017 and 2020 (Fig. 3(A)).

In our second application, to broaden the scope of our analysis and achieve a more
generalized understanding of input-output relationships, we expanded the prediction ap-
proach beyond the top-3 input candidates. Specifically, we constructed an HS4 input-
output dataset in which the Backward & Forward method includes all input candidates
with a rank lower or equal to 10. This extension allowed us to capture a more compre-
hensive view of the product network, resulting in a graph composed of 26 interconnected
components. Collectively, these components include 55,932 input-output relationships
between 1227 products.

Analyzing the structural properties of the network revealed that products such as Met-
alworking Transfer Machines, Other Knit Clothing Accessories, Tulles and Net Fabric,
Other Plastic Products, and Copper Housewares had the highest betweenness centrality,
highlighting their roles as key intermediaries. Metalworking Transfer Machines connect
upstream metalworking operations to diverse downstream industries, underscoring their
critical role in manufacturing. Other Knit Clothing Accessories and Tulles and Net Fabric
link raw materials in the textile sector to downstream applications in fashion and apparel.
Similarly, Copper Housewares and Other Plastic Products act as versatile connectors be-
tween raw material suppliers and a wide range of consumer and industrial markets.

Building on the analysis of the HS4 input-output network, Fig. 3B illustrates the input-
output network, where the products are aggregated by their respective HS sectors (22
in total). The size of each node represents the sample size of HS4 products within the
sector, while the edge weights are calculated as the number of input-output relationships
between products from the two sectors divided by the sum of the total out-degree of the
source node and the total in-degree of the target node. To enhance clarity, the visualization
includes only the 41 highest-weight edges and their connected nodes, highlighting the
most significant interdependencies.

The visualization highlights dominant flows such as the bidirectional interaction be-
tween Machines and Metals, emphasizing their central role in industrial production.
Chemical Products demonstrate significant reliance on Textiles for essential inputs, while
the dependency between Machines and Textiles reflects the pivotal role of advanced ma-
chinery in textile manufacturing. Other notable connections include Metals supplying
Chemical Products, Chemicals playing a critical role in the production of Machines and
Metals, and Metals contributing to Textiles through machinery and component materials.
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Figure 3 (A) Estimation of trade flow between two trading regions and two input-output products in the
period between 2017 and 2020. (B) A subset of the input-output HS Sector product network, aggregated
from HS4 input-output data. Node size represents the sample size of each sector, while edge weights are
normalized to reflect the relative strength of connections. (C) Relationship between the Product Complexity
Index and the Value Chain Position of products belonging to the categories of Ores (a), Vehicle Parts (b),
Animal Hides (c), and Plastics (d) which are identified manually by their HS codes. The outputs for Vehicle Parts,
Ores, Animal Hides, and Plastics are derived from the results obtained using the Backward & Forward method
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Secondary flows, such as Mineral Products feeding into Metals, and Textiles connecting
with Instruments for precision manufacturing and quality control, further illustrate the
intricate interdependencies that sustain sectoral interactions within the network.

This analysis highlights the potential of our method to go beyond the top three inputs,
offering a deeper insight into the input-output relations between both HS4 and HS Sector
product levels.

Our third application explores the complexity of products along the value chain. That
is, whether the sophistication or knowledge intensity of a products grows, declines, or
peak as we move along the value chain. For instance, are engine parts and LCDs more
sophisticated products than finished cars or telephones?

Connecting value chains with product sophistication measures is important to those
working in economic development since many classical and modern theories of economic
development discuss diversification along value chains (e.g. from copper to electric wires)
(Hirschman [19], Bontadini and Savona [6], Hidalgo [17], Rosenstein-Rodan [37]). Yet,
since value chains can be explored in two directions, upstream and downstream, the ques-
tion of which development path is more conducive to industrial upgrading requires under-
standing how value chain connections link products with different levels of sophistication.
After all, development efforts attempt to move countries up the sophistication ladder.

During the last decade, this field was invigorated by the emergence of measures of prod-
uct sophistication, extracted from international trade data, that can quantify the knowl-
edge intensity of products (Hidalgo and Hausmann [18], Hausmann et al. [15], Hidalgo
[16]). Yet, despite a few exceptions using aggregate data (Bahar et al. [3]), the connection
between value chains and product sophistication has been rarely explored.

Using our data we can compare the average complexity of initial products (e.g. ores, ani-
mal hides, etc.), intermediate products (e.g. vehicle parts, plastics, etc.), and final products
(e.g. vehicles, telephones), predicted using our “Backward & Forward” method.

Figure 3(C) shows the average complexity of products in a few selected categories (ores,
animal hides, vehicle parts, and plastics) compared to their predicted outputs. Initial prod-
ucts that belong to the Harmonized System (HS) category of Mineral Products (HS2
code: 0526 and 0526), such as sand, clay, granite, cobalt ore, precious metal ore, have–
on average–a lower product complexity index than their predicted outputs such as steel
wire, nickel powder, and netting. Intermediate products in the category of vehicle parts
(HS4 codes: 168412, 168413, 168414, 168482, 168483, 168484, 168487, 168501, 168501,
168502, 168503, 168504, 168505, 168506, 168507, 168512, 188706, 188708), such as elec-
tric motor, electric motor parts, transmissions, gaskets, have on average a higher product
complexity index than their predicted outputs (e.g. motor vehicles, cars, delivery trucks,
special purpose motor vehicles, etc.). We find a similar pattern for animal hides (primary
products in HS category: 08) and intermediate plastic products (HS2 code: 0740). In the
case of animal hides, the resulting outputs are of a greater complexity than the raw mate-
rials, while in the case of plastic products, the resulting outputs are of lower complexity.

These findings are consistent with the idea that complexity peaks in the middle of value
chains, and that both primary products and finished goods are of lower complexity than
intermediate inputs.

8 Conclusion
Here we presented a first attempt to learn value chain relationships and estimate trade
flows from trade data, by combining concepts from trade theory with machine learning
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techniques. While data on global value chains is notoriously aggregated, the “Backward
& Forward” method offers a promising solution for mapping global value chains at the
product level.

However, it is important to acknowledge that our method is not perfect. Although it
operates at the product level, it may provide some false-positive value chain relationships,
and it does not offer a complete input-output network. Additionally, optimizing the dif-
ferent parameters of our method can be a slow and complicated process.

Despite these limitations, the “Backward & Forward” method successfully identifies at
least one accurate input for over 40% of HS6 products (in total 5000+) and more than
56% of HS4 products (in total 1200+), marking a performance more than twice that of a
random baseline model. Moreover, our findings indicate that the method accurately iden-
tifies 70% of the first inputs for machinery products and correctly discerns three inputs for
complex products like cars, integrated circuits, computers, and telephones. This validates
the possibility of using international trade data at the regional level to identify value chain
relationships. Furthermore, our model and results can serve as a foundational benchmark
that subsequent research can refine and improve in the area of value chain mapping.

Increasing the accuracy of the “Backward & Forward” method represents an interesting
avenue for future research. One approach is by fine-tuning the model with input-output ta-
bles that have a higher sectoral and geographical resolution than the present OECD ICIO
data. Another approach is to expand the regional trade data by linking product codes with
different classifications (e.g. Standard International Trade Classification (SITC), Central
Product Classification (CPC), Standard Industrial Classification (SIC), Global Trade Anal-
ysis Project (GTAP)) to HS. Lastly, extending the validation of the method to more than
three inputs per output would bring us closer to obtaining a complete value chain network.
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