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Optimal diversification strategies in the networks
of related products and of related research areas
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Countries and cities are likely to enter economic activities that are related to those that are

already present in them. Yet, while these path dependencies are universally acknowledged,

we lack an understanding of the diversification strategies that can optimally balance the

development of related and unrelated activities. Here, we develop algorithms to identify the

activities that are optimal to target at each time step. We find that the strategies that

minimize the total time needed to diversify an economy target highly connected activities

during a narrow and specific time window. We compare the strategies suggested by our

model with the strategies followed by countries in the diversification of their exports and

research activities, finding that countries follow strategies that are close to the ones sug-

gested by the model. These findings add to our understanding of economic diversification and

also to our general understanding of diffusion in networks.
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In a world where the probability that a region will enter a new
economic activity increases with the presence of related
activities, one of the main challenges of regional economic

development is to identify the activities that a region should
target. Regions may want to focus on activities that leverage local
knowledge, but are unlikely to open new development paths. Or
they may choose riskier activities, which could be harder to
develop but lead to new opportunities. In choosing the latter,
there is a question on whether there is a particularly beneficial
time to leap into a new territory.

During the last decades a growing literature has shown that the
probability that a region will start exporting a new product1,2, or
develop a new industry3,4, technology5, or research activity6,7,
increases with the number of related activities present in that
location, or with the presence of that activity in neighboring
locations6,8. These findings, which are evidence of the social,
technological, geographic, and economic constraints to knowl-
edge diffusion, have been modeled using network methods9 that
allow scholars to connect related activities and by new datasets
that summarize patterns of co-location1 and co-production3,5,7,
as a way to measure the relatedness of activities. This literature
has given rise to a nuanced understanding of the empirical path
dependencies that shape economic development, but has left
unanswered questions about the optimal strategies needed to
traverse these development landscapes.

The literature on network diffusion, on the other hand, has
explored how the structure of networks, and the seeding of epi-
demics or information, affects diffusion10–13. Hence, it presents a
good point to start thinking about strategies for cases when
knowledge diffusion is constrained by the relatedness of activities.
An important distinction within this networks’ literature is the
difference between simple and complex contagion14–16. Simple

contagion involves situations where transmission requires contact
with a single individual17. Complex contagion involves reinfor-
cement by multiple sources14–16, and hence, is a more accurate
representation of development processes involving knowledge
diffusion, where the probability of success is known to increase
with the presence of related activities1–8. Therefore, we can create
models that optimize knowledge diffusion by building on the idea
of complex contagion14–16.

Here, we formalize the problem of identifying optimal eco-
nomic diversification strategies as a problem of strategic diffusion
in the presence of complex contagion. We explore this problem
for simple and complex network topologies, finding that strate-
gies that minimize the total time needed to diversify an economy
target highly connected nodes at an intermediate step of the
process. We compare the strategies with the empirical behavior
observed for countries in the diversification of their exports and
research publications, finding that this empirical behavior is
similar to the strategies suggested by our theory.

Results
Path dependencies in networks of related activities. To identify
strategies that optimize knowledge diffusion we first empirically
characterize path dependencies, and then use this characteriza-
tion to simulate development through various strategies. Fig. 1a, b
show the empirically determined networks of related products (a)
and related research areas (b). Products are connected if they are
likely to be co-exported1 and research areas are connected if the
same scholars are likely to have published in both of them7 (See
Supplementary Notes 5 and 6 and original papers for data and
methods). These networks define path dependencies for the
development of new exports and research activities. Figure 1c, d
shows, respectively, the path dependencies for the network of
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Fig. 1Modeling the empirical development of exports and research areas. a Network of related products or product space (from ref. 1). b Network of related
research areas or research space (from ref. 7). c Probability that a country’s export per capita in a product surpasses 25% of the world’s average as a
function of density: the fraction of related products already exported by that country. d probability that the number of per capita publications of a country in
a research area becomes larger than the world’s average as a function of density: the fraction of related areas where that country already participates in e.
We model the behavior observed in c and e by using a power-function for the probability that an activity will be developed by a location (Eq. 1). Here we
show the behavior of this power function for different values of α. f We model diffusion by assuming nodes in a network can be in three possible states:
inactive (gray), potentially active (peach), and active (orange). Potentially active nodes are connected to active nodes but are not yet active

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03740-9

2 NATURE COMMUNICATIONS |  (2018) 9:1328 | DOI: 10.1038/s41467-018-03740-9 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


related products and the network of related research areas. Here
we can see that the probability that a country will become a
significant exporter of a product in a 4 year period increases with
the fraction of related products already exported by that country.
By the same token, the probability that a country will enter a new
research area in a 3 year period increases with the fraction of
related research areas where that country is actively publishing
in (Fig. 1d).

We can model this behavior by noticing that in both cases the
probability that a country will start exporting a new export, or
become active in a research area, increases as a power of the
fraction of related activities present in that location (y= axb).
This empirical law means that the cost of developing a related
activity is much lower than the cost of developing an unrelated
activity, since the probability of success is much higher for related
activities. For the product space and the research space this power
function has a slightly super-linear form, which is respectively:
y ≈ 0.16x1.03 for the product space and y ≈ 0.74x1.09 for the
research space (See SI for more information).

Modeling strategic diversification. We can bring these empirical
findings into a theoretical model by modeling the probability that
a location will develop a new activity as (Fig. 1c, d):

pi ¼ B

Pk
j¼1

aijMj

ki

0
BBB@

1
CCCA

α

ð1Þ

where aij is the adjacency matrix connecting related activities i
and j (aij= 1 if there is a link and 0 otherwise), Mj is a memory
vector indicating if activity j is active (Mj= 1) or inactive (Mj= 0)
(the country is an exporter of a product, or participates in a
research area), ki is the total number of activities related to
activity i (whether they are active or not) (ki ¼

P
j aij), B is the

probability of activation when all related activities are present,
and α is a parameter that helps us adjust the strength of path
dependencies. For intuition, α= 0 means that the probability of
activating a node is the same for nodes with many or few related
activities (no complex contagion or no path dependence), α= 1
means that the probability of activating a node is linearly pro-
portional to the number of related activities present in a location,
and α > 1 means that the probability of activating a node increases
concavely with the number of related activities present in a
location. Both the product space, and the research space, exhibit a
behavior that is slightly super linear (α>1 as shown in Fig. 1c, d).

We then use this model to identify the optimal development in
a network where activities (products or research areas) can be in
one of three states: active (A), potentially active, (P) or inactive (I)
(Fig. 1e). Potentially active nodes—nodes with non-zero activa-
tion probability—can be activated with a probability following
our empirically informed model (Eq. 1).

Since developing activities is costly, we model diffusion
sequentially, by choosing one potentially active node as an
activation target at each time step (the target). A strategy,
therefore, can be described as an ordered sequence of activation
targets. Hence, the strategic problem that we need to solve is to
identify a sequence of targets that minimizes the total time
needed to activate all nodes in a network. Recently, increasing
economic diversity has become an explicit economic development
goal for multiple countries. Saudi Arabia18, Peru19, Chile20, and
Indonesia21, are just a few examples that have made increasing
the diversity of their economies an explicit development goal.
Certainly, one could focus on other objective functions (such as
maximizing the contribution of exports to GDP, minimizing

inequality22, or the carbon footprint23 of a country’s export
structure). For now, we leave the extension to other objective
functions as a future exercise and focus on minimizing the total
time needed to activate all of the nodes in the network.

Also, we do not consider strategic interactions (situations in
which multiple diffusion processes are competing for the same
nodes in the network). While we acknowledge that the problem of
strategic interactions is an interesting one, we use instead what is
a standard assumption in economic development. This is that
world markets are relatively large compared to domestic markets.
This assumption is validated by the data, since—on average—new
entrants represent less than 1 percent of the global market of a
product. So the real competition that new entrants face is not
with each other, but with large incumbents. Hence, we focus on
exploring solutions for the problem of strategic diffusion in the
case of a single objective function (diversification) and in the
absence of strategic interactions. Yet, even in this simple case, the
problem of finding optimal sequences for complex contagion is
computationally expensive, so we make simplifications that make
the problem tractable. Going forward, we call the sequences that
minimize the total time needed to activate the network an optimal
diversification strategy.

We begin by solving the model for three topologies: a wheel
network (a network with a central hub surrounded by a ring of
nodes) (Fig. 2a), a generalized wheel network (a network with
multiple hubs connected to a large number of nodes in a random
network) (Fig. 2b), and a scale-free network constructed using the
configuration model24 (Fig. 2(see Fig. 1c)). We use the wheel
network to develop our basic intuition, and then, use the more
complex network topologies to show that the intuition developed
in the wheel network generalizes to more complex cases. These
three networks have heterogeneous degree distributions where
few nodes have high degrees while many nodes have low degrees.
Their structures are similar to the network structures of research
space and product space so we can readily assume that the most
effective strategies in these three networks are the most effective
ones in the two spaces. Then, we bring the theory to the data by
returning to the network of related products and the network of
related research activities.

We benchmark our strategies using five simple diffusion
strategies: random strategy: where we target potentially active
nodes at random; high-degree strategy: where we target the
potentially active node with the highest degree; low-degree
strategy: where we target the potentially active node with the
lowest degree; greedy strategy: where we target the node with the
highest probability of activation; and majority strategy: where we
target the potentially active node with the highest number of
active neighbors (which can still have a small probability of
activation when that node has many neighbors). The motivation
for each of the five strategies is as follows. On the one hand, we
have low-hanging fruit strategies, such as greedy and low degree.
These are strategies that target easy to activate nodes, but fail to
consider the future strategic value of these nodes (how many
nodes they will help activate in the future). On the other hand, we
have more ambitious strategies, such as majority and high degree,
which target nodes that could be difficult to activate early on, but
that can help activate other nodes later in the process. The high-
degree strategy is particularly interesting as a benchmark because
it is a common heuristic in problems of simple contagion11,25.
Finally, the random strategy allows us to describe what to expect
in the absence of strategic choices, and hence, is an important null
benchmark that any sensible strategy should beat.

Consider a wheel network populated by Z nodes (Fig. 2a). A
wheel network has a central hub, which is connected to all nodes,
and a ring of Z−1 nodes that are connected to two neighbors and
the hub. The wheel network is particularly instructive because the
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problem of strategic diffusion reduces simply to that of choosing
when to target the hub. In the wheel network, the probability of
activating peripheral nodes (pi= (1/3)α) does not change unless
the hub is active. After the hub is active, the probability of
activating peripheral nodes grows to (2/3)α.

We start with a single active peripheral node. The greedy
strategy in this case is to always develop the activity with the
highest probability of success, and hence, to activate 1/3 of the
peripheral nodes before targeting the hub. The majority strategy
would target the hub after one peripheral node is infected, and
would be almost identical to the high-degree strategy. The low-
degree strategy would target the hub last.

We can obtain an optimal strategy by leveraging the symmetry
of the wheel network to write an equation for the average total
time needed to activate the full network.

Let L be the time when we target the hub, measured as the
number of peripheral nodes that have been activated. Also, note
that the expected time t required to activate a node with
activation probability p is t= 1/p. Then, the total time required to

activate the entire network will be equal to:

TðL; αÞ ¼ 3αðL� 1Þ þ Z � 1
L

� �α

þ 3
2

� �α

ðZ � 2� LÞ þ 1 ð2Þ

where 3α is the time required to activate each of the first L−1
nodes, ððZ � 1Þ=LÞα is the time required to activate the hub, and
(3/2)α is the time required to activate all remaining peripheral
nodes after activating the hub, except for the last one which takes
one unit of time.

Figure 2d shows the total time needed to activate the entire
network as a function of L and α (T(L,α)). When α approaches
zero, relatedness does not matter and therefore, activation times
do not depend on when you target the hub. As α increases, and
we dial in the importance of relatedness, an optimal solution
emerges. For α= 1 the time is minimized when about 7% of all
nodes are active. For α= 2, the optimal time to target hubs is
when 10–15% of the peripheral nodes are active. This optimal
window is sooner than what we would obtain from the greedy
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Fig. 2 Strategic diffusion in networks. Network models. aWheel network, b generalized wheel network, and c scale-free network. d Time needed to activate
all nodes in the wheel network as a function of the time in which the hub is targeted, with time expressed as the fraction of active nodes (Eq. 2). Optimal
time is indicated with the red line. e optimal strategy for the wheel network described as the degree of the nodes that is optimal to target for each fraction
of the total nodes that have been activated. f Total time needed to activate a generalized wheel network as a function of the degree of hubs for the five
simple strategies and for the solution of Eq. 4 (in black line, black dots represent a simulation). g optimal strategy for the generalized wheel network
described as the degree of the nodes that is optimal to target for each fraction of the total nodes that have been activated. Inset shows optimal targeting
time as a function of the degree of the hubs. h Total activation time to activate a scale-free network for the five pure strategies and the optimal mixed
strategy as a function of the parameter modeling the importance of relatedness α. Inset shows optimal mix of greedy and majority strategies as a function
of α. i Dynamic strategies for the scale-free networks obtained via numerical simulations for the greedy, random, and the optimal mixed strategy. The
mixed strategy targets hubs at an intermediate level
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strategy. All other strategies (majority, low degree, high degree,
and random) perform poorly. Also, we note that the optimal
window is asymmetric. Since the functional form of Eq. 2
(Fig. 2d) is such that it decays fast near 0, and rises slowly after
the optimal. This tells us that in an uncertain situation, it is less
risky to be one step late than one step too early.

Figure 2e shows a representation of the optimal strategy for the
wheel network. Here, the x-axis shows the fraction of the network
that has been activated, and the y-axis shows the degree of the
nodes that is optimal to target at that time. The optimal value (L*)
can be obtained by setting dT/dL= 0:

L�ðαÞ ¼ ðZ � 1Þ ðð3=2Þα þ 3αÞðZ � 1Þ
α

� �� 1
αþ1 ð3Þ

The wheel network model has four important implications.
First, it tells us that the optimal window of time to target the hub
activity is lower than we would expect from the greedy strategy
that focuses only on the most related activity
L�optimal=Z<L

�
greedy=Z ¼ 1=3. Second, it tells us that targeting hubs

too early is a strategy that performs poorly. Third, it shows us that
the difference between the optimal solution and the sub-optimal
solutions increases with α, meaning that the value of using the
right strategy is small when relatedness is not important (α << 1),
but large when relatedness is substantial (α ≥ 1). Finally, we find
the optimal target values increase with α, meaning that we need to
target hubs later in the process when the importance of
relatedness is stronger.

Next, we extend these results to a generalized wheel network
and a scale free-network (See SI Section 2.1 for more details). We
call a generalized wheel network a network with m hubs
connected to kH low degree nodes that form themselves a
random network with average degree kL << kH. The total number
of low degree nodes is n. (Fig. 2b). This allows us to generalize the
idea of the wheel network and write an equation for the total
activation time as:

TðL; αÞ ¼ PL
j¼2

PkL�1

i¼0

n� 2

kL � 1

� ��1 j� 1

i

� �
n� j� 1

kL � 1� i

� �
mkHþkL
nð1þiÞ

� �α

þm
PL�1

i¼0

L

i

� �
n� L� 1

kH � i

� �
n

kH

� �
kH
iþ1

� �α

þ Pn
j¼Lþ1

PkL�1

i¼0

n� 1

kL

� ��1 j

i

� �
n� j� 1

kL � i

� �
mkHþnkL
mkHþin

� �α

ð4Þ

In Eq. 4, the first sum accounts for the activation time of the
initial L low degree nodes, the second term for the activation of
the m hubs, and the third term accounts for the activation time of
the remaining n−L low degree nodes. Since this expression does
not have a closed form solution, we explore it numerically. For
more information about the equation, see SI Section 3.2.

Figure 2f compares the predictions of Eq. 4 with the results
obtained for numerical simulations of the five strategies described
above: random, high degree, low degree, greedy, and majority. We
vary the heterogeneity of these networks by increasing the
connectivity of hubs (increasing kH). For illustration purposes, we
consider generalized wheel networks with 1000 nodes (10 hubs
and 990 low degree nodes) although the results are not too
sensitive to the number of hubs.

Figure 2f shows that the difference between solutions is larger
for more heterogeneous networks, meaning that choosing the
right dynamic strategy is more important when networks are

heterogeneous. In fact, Eq. 4 provides a strategy that activates the
whole network in 80 percent of the time of the greedy and
majority strategies, and in 70 percent of the time required using
the random strategy, for the most heterogeneous networks.
Figure 2g shows the optimal strategy by plotting the connectivity
of nodes that is optimal to target at each step. The optimal time to
target hubs in a generalized wheel network as a function of their
degree is shown in the inset.

Finally, we explore diffusion in scale free networks26 (Fig. 2c).
Scale-free networks are heterogeneous networks characterized by
a power-law degree distribution, meaning that the probability
that a node will be connected to k other nodes follows a
distribution of the form PðkÞ � k�γ (See SI Section 2.2 for more
details). Since we do not have an analytical solution for the case of
scale-free networks we explore the problem numerically. Figure 2h
compares the performance of the five aforementioned strategies
(random, low degree, high degree, greedy, and majority) with the
performance of a strategy that mixes the greedy strategy (with
probability p) and the majority strategy (with probability 1−p) to
minimize diffusion time. This mix of strategies beats all
benchmarks, and performs relatively better when relatedness is
more important (higher α). The inset of Fig. 2h shows the optimal
mix of greedy and majority needed to minimize the total diffusion
time for each α. Figure 2h characterizes the strategy identified by
this optimal mix by showing the average degree of the nodes
targeted at each diffusion step. Once again, we observe that the
optimal strategy targets high degree nodes earlier than a strategy
focused on the nodes with the highest probability of activation
(greedy).

Empirical validation. We now can bring the theory to the data by
looking at the average strategies followed by countries in the
development of new exports and research areas. Like we did for
our models, in Fig. 2e, g, i, we plot for both of these networks the
average connectivity of the nodes developed by a country as a
function of the number of active nodes (the level of diversification
of exports or diversification in research activities). We then
compare the empirically observed behavior with an optimal
strategy obtained by using a combination of greedy and majority
strategies. In both cases, we follow the empirically observed
activation probabilities shown in Fig. 1.

Figure 3a shows the average connectivity in the product space
of a country’s new exports as a function of its level of
diversification—fraction of all exported products—when the
country started exporting each product with comparative
advantage. The empirical behavior matches the predictions of
the model qualitatively, in that both the empirical curve and the
model exhibit an inverse-U relationship. That is, countries tend to
jump to more connected products at an early but intermediate
level of diversification, as it would be suggested by our theory of
strategic diffusion. Yet, compared to the model, countries tend to
overshoot for hubs early in the process, and also, slightly
undershoot at intermediate steps. A similar behavior is observed
for countries developing new research areas in the research space.
Here, the optimal of the simulation is close to what we expect
from the theory.

These results show that the process of diversification of
countries in the product space and research space is—on average
—close to what we should expect from a model of strategic
network diffusion focused on minimizing the diversification time.

Discussion
Scholars have long observed that similar productive activities
agglomerate27. While many mechanisms have been proposed in
the past to explain such agglomerations, knowledge diffusion has
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emerged as one of the main drivers of related activities at multiple
scales, from cities, to regions3, to countries1. The main finding
supporting this idea is the fact that the probability of entering an
activity increases with the number of related activities present in a
location, or in nearby locations, probably because similar activ-
ities require similar inputs (which are most likely, knowledge
based)1–8,28–31. Yet, despite the prevalence of this relationship,
little is known about the strategies that are optimal to maximize
diversification when knowledge diffusion is constrained by a
network of related activities.

Here, we explore strategies to maximize knowledge diffusion
in situations where the probability that a region will enter an
activity increases in the presence of related activities. Of course,
this is not a simple problem, so we present a stylized version of it
focused on maximizing diversification for a few theoretical net-
works and two previously published networks of relatedness: the
product space1 and the research space7. Yet, one could extend
these ideas to other objective functions, such as total contribution
of exports to GDP, economic complexity32, or the carbon
intensity of products23. To do this, one would assign each node to
a value (e.g., its potential contribution to GDP), and would search
for a strategy that finds the sequence that maximizes an aggre-
gation of these values. In our case, we focus on diversification as
an objective function because it represents a convenient baseline,
one where all nodes have the same value. Yet, other functions
could be explained as well.

Here, we explore this problem analytically for simple network
structures, and numerically for complex networks, to show that
the strategies needed to maximize diversification in the presence
of related activities are dynamic, and require focusing not only on
which activities to target, but on when to target highly connected
activities. Our findings suggest that efforts to target highly con-
nected activities and research areas should be optimal at an
intermediate, and relatively low, level of diversification. These
findings improve our understanding of strategies that can help
maximize knowledge diffusion, and also, add to our general
understanding of diffusion in networks.

Data availability. The details of all data and methods used are
given in Supplementary Notes 5 and 6 and original papers1,7.
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